Application of Biregressional Designs to Electrodialytic Removal of Heavy Metals from Contaminated Matrices

نویسندگان

  • Alexandra B. Ribeiro
  • Eduardo P. Mateus
چکیده

Given a base design with quantitative factors and a primary linear regression to each of the treatments, we may adjust secondary regressions of linear combinations of the adjusted coefficients on the primary regressions on the factor levels, thus obtaining a biregressional model. A biregressional design was established for a set of treatments, defined from quantitative factors and a linear regression in the same variables. Afterwards the action of the regression coefficients and their linear correlations was analysed. This approach was used to study the electrodialytic process (ED), a decontamination technique for removal of heavy metals from polluted matrices. The method uses a low-level direct current as the “cleaning agent”, combining the electrokinetic movement of ions in the matrix with the principle of electrodialysis. The authors have studied the removal of heavy metals from industrially heavy-metal-contaminated soil, preserved wood waste and fly ash from municipal solid waste incinerators using the application of the electrodialytic process. In this paper we show how statistics may support the development of a research line. 124 A.B. Ribeiro and E.P. Mateus The removal of heavy metals was found to be described, in all studies, by low degree polynomials with null independent terms. The coefficient [twice the coefficient] of the first [second] degree terms measuring the initial rate [acceleration] of removal. Our approach enabled the study of the action of the factors defining the treatments on these, and other, coefficients of the polynomials.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electrodialytic extraction of heavy metals from Greenlandic MSWI fly ash as a function of remediation time and L/S ratio

The management of Greenlandic municipal solid waste incineration (MSWI) fly ash could be improved. Presently, the fly ash is disposed of in Norway as the fly ash is classified as hazardous waste. Fly ash contains high amounts of leachable heavy metals, but also resources that could be beneficial for reuse. In electrodialytic remediation a direct current is applied to a contaminated particulate ...

متن کامل

Reducing Agents Enhanced Electrokinetic Soil Remediation (EKSR) for Heavy Metal Contaminated Soil

Reducing agents-Enhanced electrokinetic Soil Remediation (EKSR) was performed for the removal of chromium (Cr), cobalt (Co) and nickel (Ni) from contaminated soil. The reducing agents oxalic acid and ascorbic acid were investigated under constant voltage gradient (2.0 V/cm), current changes, pH, redox potential, concentration changes and removal performance of Heavy Metals (HMs). The result...

متن کامل

Performance of purslane (Portulaca oleracea) in nickel and cadmium contaminated soil as a heavy metals-removing crop

Specific plants can remove heavy metals from the soil and contribute to pollution remediation in cropping systems. Determining the level of highest heavy metals that a super-accumulator crop can withstand without reducing its yield is important for management. The objective of this study was to investigate the heavy metal-removing capacity of purslane by studying different stress criteria and b...

متن کامل

Role of Arbuscular Mycorrhizal (AM) Fungi in Phytoremediation of Soils Contaminated: A Review

Pollution of the soil environment with toxic materials from fossil burning, mining and smelting of metalliferous ores, disposal of sewage, fertilizers and pesticides, etc. has increased dramatically since the onset of industrial revolution. Application of plants with ability of absorbing heavy metals is a low-cost alternative for eliminating soils from heavy metals. Phytoremediation uses plants...

متن کامل

Role of Arbuscular Mycorrhizal (AM) Fungi in Phytoremediation of Soils Contaminated: A Review

Pollution of the soil environment with toxic materials from fossil burning, mining and smelting of metalliferous ores, disposal of sewage, fertilizers and pesticides, etc. has increased dramatically since the onset of industrial revolution. Application of plants with ability of absorbing heavy metals is a low-cost alternative for eliminating soils from heavy metals. Phytoremediation uses plants...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010